DLP是“Digital Light Procession”的缩写,即数字光处理。也就是把影像信号经过数字处理后光投影出来,是基于美国德州仪器公司开发的数字微镜元件——DMD来完成可视数字信息显示的技术。
DLP 3D打印技术的基本原理是数字光源以面光的形式在液态光敏树脂表面进行层层投影,层层固化成型。
DLP工作原理和应用范围
DLP较其他类型的3D打印技术有其优势。首先,没有移动光束,振动偏差小没有活动喷头,完全没有材料阻塞问题,没有加热部件,高电气安全性,打印准备时间短,节省能源,首次耗材添加量远少于其他设备,节省用户成本。其次,DLP可制造较为精细的零部件,如珠宝,齿科模具等。相对其他大型3D打印机而言,DLP打印技术无法打印大物件,因此大多是桌面级3D打印机,较多应用于医疗、珠宝、教育等领域。
DLP技术可以提高表面处理质量和速度。
宁波智造数字科技拥有经验丰富的3D打印技术研发团队,近几年研发的高精系列DLP3D打印机。其中DLP系列产品打印精度提高到了25μm,表面光滑几乎不需要后期处理。该设备能控制打印成本,一键修补模型,自动添加支撑和标签,减少打印模型的水纹,打印数据可链接9台电脑云端实时查看。凭着较高的性能,M-Dental系列被广泛应用到齿科3D打印,颇受齿科新型种植业技术者的青睐。
随着科技日新月异的发展,物联网被越来越广泛的应用在我们的生活中。谈到物联网,就不得不提到传感器,它能感受倒被测量的信息并能将这些信息按一定规律变换成为信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。在整个物联网系统中,需要考虑的是各种传感器的强度和功率还得考虑如何去创建如此大量的设备,而3D打印技术和纳米材料解决了这个难题。我们可以切实地看到3D打印技术用于创建和批量生产大量传感器,结合上纳米材料就能够更大的发挥出传感器的作用。3D打印技术为传感器的制造提供了新的思路,智造科技的高精度3D打印机以其5微米的Z轴高精度在传统的传感器制作流程中很好的解决了加工周期长,小批量生产造价高,复杂外形的传感器以及传感器的精度限制。随着社会的发展,物联网定将成为主流,而3D打印技术也将成为其一大助力。
微流控技术从开始功能单一的流体控制器件发展到现在已经成为一项多功能集成、应用广泛的微流控芯片技术。在分析化学、医学诊断、细胞筛选、基因分析、药物输运等领域得到了广泛的应用。传统制作微流控芯片的微加工技术大多数是继承自半导体工业,加工过程工序繁多,而且需要价格昂贵的先进设备。但随着3D打印技术的出现,其可以明显简化微流控芯片的加工过程,并且能灵活选择打印材料。现在只需要在设计完成后就能够通过高精度3D打印机来打印制作出微流控芯片,与其他微加工技术相比降低了微流控芯片的技术门槛和加工成本。宁波智造科技的高精度系列DLP 打印机能很好满足微流控这一专业需求,其设备已销往国内外相关领域起到切实作用。
微流体技术是指在微观尺寸下控制、操作和检测复杂流体的技术,是在微电子、微机械、生物工程和纳米技术基础上发展起来的一门交叉学科。在生物、化学、材料等科学实验中,经常需要对流体进行操作,如样品DNA的制备、液相色谱、PCR反应、电泳检测等操作都是在液相环境中进行。如果要将样品制备、生化反应、结果检测等步骤集成到生物芯片上,则实验所用流体的量就要从毫升、微升级降至纳升或皮升级,这时功能强大的微流体装置就显得必不可少了。因此随着生物芯片技术的发展,微流体技术作为生物芯片的一项关键支撑技术也得到了人们越来越多的关注。
而3D打印技术可以制造出新一代的微流体设备,优于传统方法制造。由于3D打印的特征,微流体设备的开发变的无限,比如体系结构、尺寸和生产设备的数量等因素。目前这些可以通过3D打印及其高度自动化的制造工艺实现。宁波智造科技的高精度系列DLP 打印机能很好满足微流控这一专业需求,其设备已销往国内外相关领域起到切实作用。