二十年前的小朋友很好哄,一个陀螺就能打发一下午的时间。大江南北,似乎都有这种转啊转的玩具。记得曾在书上读到,东北小朋友在冰上玩的陀螺要用鞭子抽。身处南国的笔者,冰面与鞭子都未曾见过,而见过的陀螺也都是塑料的,用手一拧,在桌上就滴溜溜地转起来,颜色混合而又慢慢分离,变幻摄人眼球。
还记得有一种会倒立的陀螺,一开始大头朝下转着,慢慢地整个陀螺就会翻过来,变成大头朝上。在科普大师马丁·加德纳的书中,也有提到到这种会倒立的陀螺。玩意虽小,也给世界各地的人带来过乐趣。
【倒立陀螺】
那么,陀螺为何转而不倒?也许你会回答,角动量守恒。
通俗来说,角动量守恒就是旋转中的物体倾向于绕着相同的旋转轴,以相同方向继续旋转。如果没有外力作用,旋转永不休止。也就是说,旋转本身也有一种惯性。轻轻推一下旋转中的陀螺,它也只会开始摇摇晃晃,而不会立刻倒下来。
地球本身是个更宏观的例子。数十亿年来,地球围绕着太阳公转,围绕着地轴自转,未有一刻歇息。公转而有春夏秋冬,自转而有昼夜晨昏,日常熟悉的这一切变化并非理所当然,它们来自太阳系形成时,星云旋转的角动量。
但在人力所及之处,要归纳出这个看似简单的定理,竟也花了不少时间。究其原因,我们的世界是如此不完美,摩擦力无处不在,不断消磨着各种运动,以至于大贤亚里士多德竟会认为力是维持物体运动的必要条件,并且整个西方世界这样一错就是一千年。
人们第一次窥视到角动量的一鳞半爪,还是在星空中,那里星体的运动没有摩擦力的阻碍。发现者则是一位眼睛不好的天文学家——开普勒。他自己做不了观测,但他的老师第谷留下了需要的所有资料。天行有常,而在纸堆中,他发现了行星的“常”,也就是后人口中的开普勒三定律,阐述了行星围绕太阳旋转的规律。而其中的第二条——无论在轨道何处,行星与太阳的连线在相同时间内扫过的面积相同——实际上就是角动量守恒的体现。
之后的牛顿更是将开普勒的工作发扬光大。他的力学三定律以及万有引力,用可以计算的公式诠释了开普勒的发现。而在牛顿力学中,人类终于完全抓住了旋转的规律,可以随意计算有关旋转的一切,而角动量守恒也成为了理所当然的推论。
对于客观规律,感性认识只是不甚可靠的第一步,可以量化并计算的理论却有着实实在在的用处。发电机和电动机利用旋转的力量,转化着不同形式的能量,构成了现代文明的基石。而在设计中,对旋转的计算直接关系到机械的安全和性能。
陀螺仪则是对于角动量守恒最为直接的应用。强有力的转动使它指向固定的方向,无论是大风大浪还是火箭发射,都不能使它的指向偏离一分半毫。也唯有如此,它才能指引船只、飞机甚至宇宙探测器沿着指定的方向航行,到达最终的目的地。